Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Intensive Care Med Exp ; 11(1): 38, 2023 Jun 12.
Article in English | MEDLINE | ID: covidwho-20236857

ABSTRACT

BACKGROUND: Optimal anticoagulation strategies for COVID-19 patients with the acute respiratory distress syndrome (ARDS) on venovenous extracorporeal membrane oxygenation (VV ECMO) remain uncertain. A higher incidence of intracerebral hemorrhage (ICH) during VV ECMO support compared to non-COVID-19 viral ARDS patients has been reported, with increased bleeding rates in COVID-19 attributed to both intensified anticoagulation and a disease-specific endotheliopathy. We hypothesized that lower intensity of anticoagulation during VV ECMO would be associated with a lower risk of ICH. In a retrospective, multicenter study from three academic tertiary intensive care units, we included patients with confirmed COVID-19 ARDS requiring VV ECMO support from March 2020 to January 2022. Patients were grouped by anticoagulation exposure into higher intensity, targeting anti-factor Xa activity (anti-Xa) of 0.3-0.4 U/mL, versus lower intensity, targeting anti-Xa 0.15-0.3 U/mL, cohorts. Mean daily doses of unfractionated heparin (UFH) per kg bodyweight and effectively measured daily anti-factor Xa activities were compared between the groups over the first 7 days on ECMO support. The primary outcome was the rate of ICH during VV ECMO support. RESULTS: 141 critically ill COVID-19 patients were included in the study. Patients with lower anticoagulation targets had consistently lower anti-Xa activity values over the first 7 ECMO days (p < 0.001). ICH incidence was lower in patients in the lower anti-Xa group: 4 (8%) vs 32 (34%) events. Accounting for death as a competing event, the adjusted subhazard ratio for the occurrence of ICH was 0.295 (97.5% CI 0.1-0.9, p = 0.044) for the lower anti-Xa compared to the higher anti-Xa group. 90-day ICU survival was higher in patients in the lower anti-Xa group, and ICH was the strongest risk factor associated with mortality (odds ratio [OR] 6.8 [CI 2.1-22.1], p = 0.001). CONCLUSIONS: For COVID-19 patients on VV ECMO support anticoagulated with heparin, a lower anticoagulation target was associated with a significant reduction in ICH incidence and increased survival.

2.
Respir Res ; 24(1): 58, 2023 Feb 18.
Article in English | MEDLINE | ID: covidwho-2261821

ABSTRACT

BACKGROUND: Acute respiratory distress syndrome (ARDS) results in significant hypoxia, and ARDS is the central pathology of COVID-19. Inhaled prostacyclin has been proposed as a therapy for ARDS, but data regarding its role in this syndrome are unavailable. Therefore, we investigated whether inhaled prostacyclin would affect the oxygenation and survival of patients suffering from ARDS. METHODS: We performed a prospective randomized controlled single-blind multicenter trial across Germany. The trial was conducted from March 2019 with final follow-up on 12th of August 2021. Patients with moderate to severe ARDS were included and randomized to receive either inhaled prostacyclin (3 times/day for 5 days) or sodium chloride (Placebo). The primary outcome was the oxygenation index in the intervention and control groups on Day 5 of therapy. Secondary outcomes were mortality, secondary organ failure, disease severity and adverse events. RESULTS: Of 707 patients approached 150 patients were randomized to receive inhaled prostacyclin (n = 73) or sodium chloride (n = 77). Data from 144 patients were analyzed. The baseline PaO2/FiO2 ratio did not differ between groups. The primary analysis of the study was negative, and prostacyclin improved oxygenation by 20 mmHg more than Placebo (p = 0.17). Secondary analysis showed that the oxygenation was significantly improved in patients with ARDS who were COVID-19-positive (34 mmHg, p = 0.04). Mortality did not differ between groups. Secondary organ failure and adverse events were similar in the intervention and control groups. CONCLUSIONS: The primary result of our study was negative. Our data suggest that inhaled prostacyclin might be beneficial treatment in patients with COVID-19 induced ARDS. TRIAL REGISTRATION: The study was approved by the Institutional Review Board of the Research Ethics Committee of the University of Tübingen (899/2018AMG1) and the corresponding ethical review boards of all participating centers. The trial was also approved by the Federal Institute for Drugs and Medical Devices (BfArM, EudraCT No. 2016003168-37) and registered at clinicaltrials.gov (NCT03111212) on April 6th 2017.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , Epoprostenol/adverse effects , Prospective Studies , Single-Blind Method , Sodium Chloride , Prostaglandins I , Respiratory Distress Syndrome/diagnosis , Respiratory Distress Syndrome/drug therapy
3.
Front Med (Lausanne) ; 9: 1000084, 2022.
Article in English | MEDLINE | ID: covidwho-2240539

ABSTRACT

Objective: Veno-venous (V-V) extracorporeal membrane oxygenation (ECMO) is increasingly used to support patients with severe acute respiratory distress syndrome (ARDS). In case of additional cardio-circulatory failure, some experienced centers upgrade the V-V ECMO with an additional arterial return cannula (termed V-VA ECMO). Here we analyzed short- and long-term outcome together with potential predictors of mortality. Design: Multicenter, retrospective analysis between January 2008 and September 2021. Setting: Three tertiary care ECMO centers in Germany (Hannover, Bonn) and Switzerland (Zurich). Patients: Seventy-three V-V ECMO patients with ARDS and additional acute cardio-circulatory deterioration required an upgrade to V-VA ECMO were included in this study. Measurements and main results: Fifty-three patients required an upgrade from V-V to V-VA and 20 patients were directly triple cannulated. Median (Interquartile Range) age was 49 (28-57) years and SOFA score was 14 (12-17) at V-VA ECMO upgrade. Vasoactive-inotropic score decreased from 53 (12-123) at V-VA ECMO upgrade to 9 (3-37) after 24 h of V-VA ECMO support. Weaning from V-VA and V-V ECMO was successful in 47 (64%) and 40 (55%) patients, respectively. Duration of ECMO support was 12 (6-22) days and ICU length of stay was 32 (16-46) days. Overall ICU mortality was 48% and hospital mortality 51%. Two additional patients died after hospital discharge while the remaining patients survived up to two years (with six patients being lost to follow-up). The vast majority of patients was free from higher degree persistent organ dysfunction at follow-up. A SOFA score > 14 and higher lactate concentrations at the day of V-VA upgrade were independent predictors of mortality in the multivariate regression analysis. Conclusion: In this analysis, the use of V-VA ECMO in patients with ARDS and concomitant cardiocirculatory failure was associated with a hospital survival of about 50%, and most of these patients survived up to 2 years. A SOFA score > 14 and elevated lactate levels at the day of V-VA upgrade predict unfavorable outcome.

4.
Crit Care ; 27(1): 48, 2023 02 05.
Article in English | MEDLINE | ID: covidwho-2228090

ABSTRACT

RATIONALE: Health-related quality of life after surviving acute respiratory distress syndrome has come into focus in recent years, especially during the coronavirus disease 2019 pandemic. OBJECTIVES: A total of 144 patients with acute respiratory distress syndrome caused by COVID-19 or of other origin were recruited in a randomized multicenter trial. METHODS: Clinical data during intensive care treatment and data up to 180 days after study inclusion were collected. Changes in the Sequential Organ Failure Assessment score were used to quantify disease severity. Disability was assessed using the Barthel index on days 1, 28, 90, and 180. MEASUREMENTS: Mortality rate and morbidity after 180 days were compared between patients with and without COVID-19. Independent risk factors associated with high disability were identified using a binary logistic regression. MAIN RESULTS: The SOFA score at day 5 was an independent risk factor for high disability in both groups, and score dynamic within the first 5 days significantly impacted disability in the non-COVID group. Mortality after 180 days and impairment measured by the Barthel index did not differ between patients with and without COVID-19. CONCLUSIONS: Resolution of organ dysfunction within the first 5 days significantly impacts long-term morbidity. Acute respiratory distress syndrome caused by COVID-19 was not associated with increased mortality or morbidity.


Subject(s)
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/therapy , COVID-19/complications , SARS-CoV-2 , Functional Status , Quality of Life , Respiratory Distress Syndrome/drug therapy
5.
Int J Mol Sci ; 23(20)2022 Oct 13.
Article in English | MEDLINE | ID: covidwho-2071504

ABSTRACT

The presence of neutralizing antibodies against SARS-CoV-2 correlates with protection against infection and severe COVID-19 disease courses. Understanding the dynamics of antibody development against the SARS-CoV-2 virus is important for recommendations on vaccination strategies and on control of the COVID-19 pandemic. This study investigates the dynamics and extent of α-Spike-Ab development by different vaccines manufactured by Johnson & Johnson, AstraZeneca, Pfizer-BioNTech and Moderna. On day 1 after vaccination, we observed a temporal low-grade inflammatory response. α-Spike-Ab titers were reduced after six months of vaccination with mRNA vaccines and increased 14 days after booster vaccinations to a maximum that exceeded titers from mild and critical COVID-19 and Long-COVID patients. Within the group of critical COVID-19 patients, we observed a trend for lower α-Spike-Ab titers in the group of patients who survived COVID-19. This trend accompanied higher numbers of pro-B cells, fewer mature B cells and a higher frequency of T follicular helper cells. Finally, we present data demonstrating that past infection with mild COVID-19 does not lead to long-term increased Ab titers and that even the group of previously infected SARS-CoV-2 patients benefit from a vaccination six months after the infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Spike Glycoprotein, Coronavirus , Pandemics , Antibodies, Viral , Viral Envelope Proteins/genetics , Antibodies, Neutralizing , Vaccination
6.
Nature ; 609(7928): 801-807, 2022 09.
Article in English | MEDLINE | ID: covidwho-1960390

ABSTRACT

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Subject(s)
COVID-19 , Energy Metabolism , Ketones , Respiratory Distress Syndrome , SARS-CoV-2 , T-Lymphocytes , 3-Hydroxybutyric Acid/biosynthesis , 3-Hydroxybutyric Acid/metabolism , Amino Acids/biosynthesis , Amino Acids/metabolism , Animals , COVID-19/complications , COVID-19/immunology , COVID-19/pathology , Diet, Ketogenic , Esters/metabolism , Glutathione/biosynthesis , Glutathione/metabolism , Glycolysis , Interferon-gamma/biosynthesis , Ketone Bodies/metabolism , Ketones/metabolism , Mice , Orthomyxoviridae/pathogenicity , Oxidation-Reduction , Oxidative Phosphorylation , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/immunology , Respiratory Distress Syndrome/metabolism , Respiratory Distress Syndrome/virology , SARS-CoV-2/pathogenicity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , T-Lymphocytes/pathology
7.
Crit Care ; 26(1): 190, 2022 06 28.
Article in English | MEDLINE | ID: covidwho-1910342

ABSTRACT

BACKGROUND: Severe COVID-19 induced acute respiratory distress syndrome (ARDS) often requires extracorporeal membrane oxygenation (ECMO). Recent German health insurance data revealed low ICU survival rates. Patient characteristics and experience of the ECMO center may determine intensive care unit (ICU) survival. The current study aimed to identify factors affecting ICU survival of COVID-19 ECMO patients. METHODS: 673 COVID-19 ARDS ECMO patients treated in 26 centers between January 1st 2020 and March 22nd 2021 were included. Data on clinical characteristics, adjunct therapies, complications, and outcome were documented. Block wise logistic regression analysis was applied to identify variables associated with ICU-survival. RESULTS: Most patients were between 50 and 70 years of age. PaO2/FiO2 ratio prior to ECMO was 72 mmHg (IQR: 58-99). ICU survival was 31.4%. Survival was significantly lower during the 2nd wave of the COVID-19 pandemic. A subgroup of 284 (42%) patients fulfilling modified EOLIA criteria had a higher survival (38%) (p = 0.0014, OR 0.64 (CI 0.41-0.99)). Survival differed between low, intermediate, and high-volume centers with 20%, 30%, and 38%, respectively (p = 0.0024). Treatment in high volume centers resulted in an odds ratio of 0.55 (CI 0.28-1.02) compared to low volume centers. Additional factors associated with survival were younger age, shorter time between intubation and ECMO initiation, BMI > 35 (compared to < 25), absence of renal replacement therapy or major bleeding/thromboembolic events. CONCLUSIONS: Structural and patient-related factors, including age, comorbidities and ECMO case volume, determined the survival of COVID-19 ECMO. These factors combined with a more liberal ECMO indication during the 2nd wave may explain the reasonably overall low survival rate. Careful selection of patients and treatment in high volume ECMO centers was associated with higher odds of ICU survival. TRIAL REGISTRATION: Registered in the German Clinical Trials Register (study ID: DRKS00022964, retrospectively registered, September 7th 2020, https://www.drks.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00022964 .


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , COVID-19/therapy , Humans , Intensive Care Units , Pandemics , Respiratory Distress Syndrome/therapy , Survival Analysis
8.
J Clin Med ; 11(9)2022 May 02.
Article in English | MEDLINE | ID: covidwho-1820306

ABSTRACT

The aim was to evaluate hospitalization rates for aneurysmal subarachnoid hemorrhage (SAH) within an interdisciplinary multicenter neurovascular network (NVN) during the shutdown for the COVID-19 pandemic along with its modifiable risk factors. In this multicenter study, admission rates for SAH were compared for the period of the shutdown for the COVID-19 pandemic in Germany (calendar weeks (cw) 12 to 16, 2020), the periods before (cw 6-11) and after the shutdown (cw 17-21 and 22-26, 2020), as well as with the corresponding cw in the years 2015-2019. Data on all-cause and pre-hospital mortality within the area of the NVN were retrieved from the Department of Health, and the responsible emergency medical services. Data on known triggers for systemic inflammation, e.g., respiratory viruses and air pollution, were analyzed. Hospitalizations for SAH decreased during the shutdown period to one-tenth within the multicenter NVN. There was a substantial decrease in acute respiratory illness rates, and of air pollution during the shutdown period. The implementation of public health measures, e.g., contact restrictions and increased personal hygiene during the shutdown, might positively influence modifiable risk factors, e.g., systemic inflammation, leading to a decrease in the incidence of SAH.

9.
Crit Care Med ; 50(6): e526-e538, 2022 06 01.
Article in English | MEDLINE | ID: covidwho-1621691

ABSTRACT

OBJECTIVES: Extracorporeal membrane oxygenation (ECMO) is a potentially lifesaving procedure in acute respiratory distress syndrome (ARDS) due to COVID-19. Previous studies have shown a high prevalence of clinically silent cerebral microbleeds in patients with COVID-19. Based on this fact, together with the hemotrauma and the requirement of therapeutic anticoagulation on ECMO support, we hypothesized an increased risk of intracranial hemorrhages (ICHs). We analyzed ICH occurrence rate, circumstances and clinical outcome in patients that received ECMO support due to COVID-19-induced ARDS in comparison to viral non-COVID-19-induced ARDS intracerebral hemorrhage. DESIGN: Multicenter, retrospective analysis between January 2010 and May 2021. SETTING: Three tertiary care ECMO centers in Germany and Switzerland. PATIENTS: Two-hundred ten ARDS patients on ECMO support (COVID-19, n = 142 vs viral non-COVID, n = 68). INTERVENTIONS: None. MEASUREMENTS AND MAIN RESULTS: Evaluation of ICH occurrence rate, parameters of coagulation and anticoagulation strategies, inflammation, and ICU survival. COVID-19 and non-COVID-19 ARDS patients showed comparable disease severity regarding Sequential Organ Failure Assessment score, while the oxygenation index before ECMO cannulation was higher in the COVID group (82 vs 65 mm Hg). Overall, ICH of any severity occurred in 29 of 142 COVID-19 patients (20%) versus four of 68 patients in the control ECMO group (6%). Fifteen of those 29 ICH events in the COVID-19 group were classified as major (52%) including nine fatal cases (9/29, 31%). In the control group, there was only one major ICH event (1/4, 25%). The adjusted subhazard ratio for the occurrence of an ICH in the COVID-19 group was 5.82 (97.5% CI, 1.9-17.8; p = 0.002). The overall ICU mortality in the presence of ICH of any severity was 88%. CONCLUSIONS: This retrospective multicenter analysis showed a six-fold increased adjusted risk for ICH and a 3.5-fold increased incidence of ICH in COVID-19 patients on ECMO. Prospective studies are needed to confirm this observation and to determine whether the bleeding risk can be reduced by adjusting anticoagulation strategies.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Respiratory Distress Syndrome , Anticoagulants/therapeutic use , COVID-19/complications , COVID-19/therapy , Extracorporeal Membrane Oxygenation/adverse effects , Extracorporeal Membrane Oxygenation/methods , Humans , Intracranial Hemorrhages/drug therapy , Intracranial Hemorrhages/epidemiology , Intracranial Hemorrhages/etiology , Respiratory Distress Syndrome/epidemiology , Respiratory Distress Syndrome/therapy , Retrospective Studies
10.
BMC Anesthesiol ; 22(1): 12, 2022 01 05.
Article in English | MEDLINE | ID: covidwho-1608359

ABSTRACT

BACKGROUND: The COVID-19 pandemic has taken a toll on health care systems worldwide, which has led to increased mortality of different diseases like myocardial infarction. This is most likely due to three factors. First, an increased workload per nurse ratio, a factor associated with mortality. Second, patients presenting with COVID-19-like symptoms are isolated, which also decreases survival in cases of emergency. And third, patients hesitate to see a doctor or present themselves at a hospital. To assess if this is also true for sepsis patients, we asked whether non-COVID-19 sepsis patients had an increased 30-day mortality during the COVID-19 pandemic. METHODS: This is a post hoc analysis of the SepsisDataNet.NRW study, a multicentric, prospective study that includes septic patients fulfilling the SEPSIS-3 criteria. Within this study, we compared the 30-day mortality and disease severity of patients recruited pre-pandemic (recruited from March 2018 until February 2020) with non-COVID-19 septic patients recruited during the pandemic (recruited from March 2020 till December 2020). RESULTS: Comparing septic patients recruited before the pandemic to those recruited during the pandemic, we found an increased raw 30-day mortality in sepsis-patients recruited during the pandemic (33% vs. 52%, p = 0.004). We also found a significant difference in the severity of disease at recruitment (SOFA score pre-pandemic: 8 (5 - 11) vs. pandemic: 10 (8 - 13); p < 0.001). When adjusted for this, the 30-day mortality rates were not significantly different between the two groups (52% vs. 52% pre-pandemic and pandemic, p = 0.798). CONCLUSIONS: This led us to believe that the higher mortality of non-COVID19 sepsis patients during the pandemic might be attributed to a more severe septic disease at the time of recruitment. We note that patients may experience a delayed admission, as indicated by elevated SOFA scores. This could explain the higher mortality during the pandemic and we found no evidence for a diminished quality of care for critically ill sepsis patients in German intensive care units.


Subject(s)
COVID-19/prevention & control , Pandemics , Sepsis/mortality , Time-to-Treatment/statistics & numerical data , Aged , Female , Germany/epidemiology , Humans , Male , Middle Aged , Patient Acuity , Prospective Studies , SARS-CoV-2 , Survival Analysis
11.
Crit Care ; 25(1): 295, 2021 Aug 17.
Article in English | MEDLINE | ID: covidwho-1362062

ABSTRACT

BACKGROUND: Intensive Care Resources are heavily utilized during the COVID-19 pandemic. However, risk stratification and prediction of SARS-CoV-2 patient clinical outcomes upon ICU admission remain inadequate. This study aimed to develop a machine learning model, based on retrospective & prospective clinical data, to stratify patient risk and predict ICU survival and outcomes. METHODS: A Germany-wide electronic registry was established to pseudonymously collect admission, therapeutic and discharge information of SARS-CoV-2 ICU patients retrospectively and prospectively. Machine learning approaches were evaluated for the accuracy and interpretability of predictions. The Explainable Boosting Machine approach was selected as the most suitable method. Individual, non-linear shape functions for predictive parameters and parameter interactions are reported. RESULTS: 1039 patients were included in the Explainable Boosting Machine model, 596 patients retrospectively collected, and 443 patients prospectively collected. The model for prediction of general ICU outcome was shown to be more reliable to predict "survival". Age, inflammatory and thrombotic activity, and severity of ARDS at ICU admission were shown to be predictive of ICU survival. Patients' age, pulmonary dysfunction and transfer from an external institution were predictors for ECMO therapy. The interaction of patient age with D-dimer levels on admission and creatinine levels with SOFA score without GCS were predictors for renal replacement therapy. CONCLUSIONS: Using Explainable Boosting Machine analysis, we confirmed and weighed previously reported and identified novel predictors for outcome in critically ill COVID-19 patients. Using this strategy, predictive modeling of COVID-19 ICU patient outcomes can be performed overcoming the limitations of linear regression models. Trial registration "ClinicalTrials" (clinicaltrials.gov) under NCT04455451.


Subject(s)
COVID-19/epidemiology , Critical Illness/epidemiology , Electronic Health Records/statistics & numerical data , Intensive Care Units , Machine Learning , Adult , Aged , COVID-19/therapy , Cohort Studies , Critical Illness/therapy , Emergency Service, Hospital , Female , Germany , Humans , Male , Middle Aged , Outcome Assessment, Health Care
12.
Cell Rep ; 35(13): 109320, 2021 06 29.
Article in English | MEDLINE | ID: covidwho-1275189

ABSTRACT

Memory B cells seem to be more durable than antibodies and thus crucial for the long-term immunity against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Here we investigate SARS-CoV-2 spike-specific memory B cells and their dependence on CD4+ T cell help in different settings of coronavirus disease 2019 (COVID-19). Compared with severely ill individuals, those who recovered from mild COVID-19 develop fewer but functionally superior spike-specific memory B cells. Generation and affinity maturation of these cells is best associated with IL-21+CD4+ T cells in recovered individuals and CD40L+CD4+ T cells in severely ill individuals. The increased activation and exhaustion of memory B cells observed during COVID-19 correlates with CD4+ T cell functions. Intriguingly, CD4+ T cells recognizing membrane protein show a stronger association with spike-specific memory B cells than those recognizing spike or nucleocapsid proteins. Overall, we identify CD4+ T cell subsets associated with the generation of B cell memory during SARS-CoV-2 infection.


Subject(s)
B-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Antibodies, Viral/immunology , CD40 Ligand/immunology , CD40 Ligand/metabolism , Cross Reactions , Humans , Immunologic Memory , Interleukins/immunology , Interleukins/metabolism
13.
Transfus Med Hemother ; 48(3): 154-160, 2021 May.
Article in English | MEDLINE | ID: covidwho-1247451

ABSTRACT

BACKGROUND: The SARS-CoV-2 pandemic has challenged many of our current routine practices in the treatment and care of patients. Given the critical importance of blood donation and transfusion we analyzed 92 blood samples of individuals infected with SARS-CoV-2 stratified by symptoms. STUDY DESIGN AND METHODS: We therefore tested blood samples for SARS-CoV-2 via RT-PCR targeting the E gene. In addition, we tested each blood sample for anti-SARS-CoV-2 IgG antibodies via ELISA and performed plaque reduction neutralization tests. RESULTS: SARS-CoV-2 RNA was absent in the blood of mild to asymptomatic patients (57 individuals) and only detectable in individuals with severe COVID-19 who were admitted to the intensive care unit (35 individuals) (n = 6/92 [6.5%]; p = 0.023 Fisher's exact test). Interestingly, anti-spike IgG antibodies were not significantly higher in intensive care unit patients compared to mild patients, but we found that their neutralizing capacity was disproportionately increased (p < 0.001). CONCLUSION: Our observations support the hypothesis that there are no potential hazards from blood or plasma transfusion of SARS-CoV-2-positive individuals with mild flu-like symptoms and more importantly of asymptomatic individuals.

SELECTION OF CITATIONS
SEARCH DETAIL